The Case for Medical Care in the Home

Bruce Leff, MD Professor of Medicine Johns Hopkins University School of Medicine Director, Center for Transformative Geriatrics Research

> The Health Industry Forum Home-Based Healthcare in the 21st Century March 17, 2016 Washington, DC

Let's Think About

- Spectrum of home-based care and disruptions in the field
- Who's at home
- Some models of home-based care

The Spectrum of Home-Based Care

Low acuity	High acuity
Chronic care	Acute care
Little or no MD involvement	High level MD involvement

Leff B, in IOM (Institute of Medicine) and NRC (National Research Council). 2015. The future of home health care: Workshop summary. Washington, DC: The National Academies Press, p5.

The Field is Expanding and Being Disrupted

What do we know about people who are at home or homebound?

Original Investigation

Epidemiology of the Homebound Population in the United States

Katherine A. Ornstein, PhD, MPH; Bruce Leff, MD; Kenneth E. Covinsky, MD; Christine S. Ritchie, MD, MSPH; Alex D. Federman, MD, MPH; Laken Roberts, MPH; Amy S. Kelley, MD, MSHS; Albert L. Siu, MD, MSPH; Sarah L. Szanton, PhD

- National Health and Aging Trends Study (NHATS)
- Population-based study
- Random sample > 65 Medicare enrollment rolls
- In-person interviews + physical and cognitive performance assessments
- Our N = 7603 non-NH subjects
- NHATS had no predefined measure of homebound capacity and ability approach

Homebound Status in U.S. in NHATS

Level	Definition	%	#
Completely Homebound	Never went out in last month	1.1%	395,422
Mostly Homebound	Rarely (weekly or less) in last month	4.5%	1.5M
Semi homebound			
Never by self	Out at least sometimes (twice per week) but never by self	3.3%	1.5M
Needs help or has difficulty	Out at least sometimes (twice per week) but needs help or has difficulty	11.8%	4.1M
Not Homebound	Out >= twice weekly without help or difficulty	79%	28M

Frequency/Ability to Leave the Home Among Community-dwelling Medicare Benefes Age > 65

Demographics by Homebound Status

Health and Function by Homebound Status

The Homebound are Not Like You and Me

- Greater burden of chronic illness
- Worse health status
- Greater functional impairment
- Limited social capital
- These folks need home-based health care approaches – few get what they need
 - Completely homebound 11% regular physician visit is a home visit
 - Mostly homebound 5%
- Invisible

Some Models of Home-Based Care: Existing and Newer

Current Skilled Home Health and Personal Care

- Medicare Skilled Home Health
 - Intermittent skilled home health care
 - Homebound + skilled need
 - 60-day episodes
 - 12,000+ agencies
 - Large workforce
 - Unloved by many, including MedPAC
- Personal Care Services
 - Home health aides
 - Financial criteria Medicaid
 - Otherwise, self-pay and difficult to access

- Discontinuous, skilled, intermittent
- Weak medical model
- Slow response to urgent problems
- Inconsistent, variable ADL support
- Payment in silos, not aligned

Newer Models of Home-Based Medical Care

- Home-based primary care
 - VA HBPC
 - Non-VA HBPC
 - Independence at Home
- Home-based palliative care
- Transitional care
- Consultative GRACE
- CAPABLE
- Hospital at Home

Home-Based Primary Care

- Continuous, comprehensive, longitudinal medical care in a patient's residence-extraordinary means to prevent crises
- Interdisciplinary coordinate <u>ALL</u> medical <u>AND</u> social
- Geriatrics and palliative care skill sets
- Careful selection of specialists
- Portable diagnostics
- Support and empowerment of caregivers / family
- 24/7 ready access to care
- Not in the body part business!

Better Access, Quality, and Cost for Clinically Complex Veterans with Home-Based Primary Care

Thomas Edes, MD, MS,^a Bruce Kinosian, MD,^{b,c,d,e} Nancy H. Vuckovic, PhD,^f Linda Olivia Nichols, PhD,^{g,h} Margaret Mary Becker, LCSW,ⁱ and Monir Hossain, MSⁱ

- Cost projections using HCC model
- N=9425 newly enrolled HBPC patients
- Projected annual costs compared with actual costs
- During HBPC Medicare costs 10.8% lower than projected
- VA + MC costs were 11.7% lower than projected
- Combined hospitalizations were 25.5% lower than during period without HBPC
- High satisfaction

Systematic Review of Outcomes from Home-Based Primary Care Programs for Homebound Older Adults

Outcome	# Studies	Result
ED Visits	4	15%
Hospitalizations	9	30%
Hospital BDOC	4	37-50%
LTC Admits	3	10-20%
LTC BDOC	1	88%
Costs	4	24%
Satisfaction/	5	Better
CG QOL	5	Better

 8 / 9 substantial effect > 1 outcome

- 6 with three core components:
 - Inter-professional care teams
 - Regular inter-professional care meetings
 - After hours support

Independence at Home: CMMI ACA 3024

- Sick patients
 - Hospital stay, post-acute care use, 2+ ADL, 2+ chronic conditions
 - Home-based (primary) care model
 - 5% min savings; gain share with CMS
 - Quality measures mostly utilization
 - 18 Sites varied organizations, 10,000 participants
 - Year 1: *\$3070 average savings per beneficiary*;
 \$25M total savings
 - Risk adjustment key in estimating savings

https://innovation.cms.gov/initiatives/independence-at-home/

Home-Based Palliative Care

Transitional Care – 3 Flavors

- Intense Naylor
 - RCT, NP intensive bridge, 4 weeks, multiple home visits
 - 6-week readmissions 10% v 25% (62% RR)
 - Hospital costs reduced ~\$3100 \checkmark 3 months, 50% savings JAMA 1999;281:613
- Less Intense Coleman
 - RCT, Coach model, written care plan, pt empowerment, light clinical touch
 - 30-day readmission 8.3% v 11.9% (30% RR)
 - Hospital costs Ψ \$488 in 6 months Arch Int Med 2006;166:1822
- Community-Based Care Transition Program (CCTP), ACA 3026
 - Community-based organization partners with acute care hospitals
 - CMMI pays direct cost of transition service
 - 102 partnerships
 - Initial evaluation: early implementation and scaling challenges, "limited evidence of early effectiveness of the program" https://innovation.cms.gov/Files/reports/CCTP-AnnualRpt1.pdf

Consultative: GRACE

- RCT, Patients have PCP
- NP structured quarterly in-home assessments, 3 year study
- Lower intensity model, no primary care, no urgent care, need experienced team
- Care processes better
- Hospitalizations lower in high risk group in year 2 44% decrease

JAMA. 2007;298:2623

- Targets community-dwelling functionally impaired low income older adults
- Time-limited: 16-week RN, OT, handyman
- Focus of intervention patient-directed REALLY
- CMMI HCIA I, NIH RCT
- Results: 75% improved ADLs. Mean improvement total sample: 3.9→2.1 ADL limitations. Significant improvement in depressive symptoms.
- Total cost: home repair+OT+RN visits <\$3,000

Annals of Internal Medicine

Improving Patient Care

Hospital at Home: Feasibility and Outcomes of a Program To Provide Hospital-Level Care at Home for Acutely III Older Patients

Bruce Leff, MD; Lynda Burton, ScD; Scott L. Mader, MD; Bruce Naughton, MD; Jeffrey Burl, MD; Sharon K. Inouye, MD, MPH; William B. Greenough III, MD; Susan Guido, RN; Christopher Langston, PhD; Kevin D. Frick, PhD; Donald Steinwachs, PhD; and John R. Burton, MD

- High-quality care
- Fewer complications
- Higher satisfaction
- Lower costs of care
- Less CG stress
- Better function
- High provider satisfaction

- CMMI HCIA II Demonstration
- Evaluation funded by the John A. Hartford Foundation

Ann Intern Med. 143:798-808, 2005. J Am Geriatr Soc. 54:1355-1363, 2006. J Am Geriatr Soc. 2008;56(1):117-23. Am J Manag Care. 15:49-56, 2009. J Am Geriatr Soc. 2009;57(2):273-8. Medical Care, 47(9):979-85, 2009. Health Affairs 2012;31:1237. hospitalathome.org

Hospital at Home Meta-Analysis

2 Effects of hospital in the home (H	ITH) on mortality
--------------------------------------	-------------------

	HITH		Hospital				
	Events	Total	Events	Total	Weight	Odds ratio, Peto, fixed effect (95% Cl	
Medical							
Almonino Ricauda 2008 ⁵⁵	9	52	12	52	2.7%	0.70 (0.27-1.83)	
Aujesky 2011 ³²	1	171	1	168	0.3%	0.98 (0.06-15.83)	
Caplan 1999 ³⁶	6	51	7	49	1.8%	0.80 (0.25-2.57)	
Carratalà 200547	1	102	0	101	0.2%	3.00 (0.12-74.52)	
Cotton 2000 ⁵⁰	1	41	2	40	0.4%	0.47 (0.04-5.46)	
Davies 200045	9	100	4	50	1.7%	1.14 (0.33-3.89)	
Diaz Lobato 2005 ⁵⁴	0	20	1	20	0.2%	0.32 (0.01-8.26)	
Hernandez 200353	5	121	7	101	1.8%	0.58 (0.18-1.88)	
Hill 1978 ²²	17	132	14	132	4.4%	1.25 (0.59-2.64)	
Koopman 1996 ²⁶	14	202	16	198	4.5%	0.85 (0.40-1.79)	
Levine 1996 ²⁵	11	247	17	253	4.1%	0.65 (0.3-1.41)	
Mather 1976 ²¹	44	226	58	224	12.7%	0.69 (0.44-1.08)	
Melin 1992 ³⁴	40	150	26	99	7.6%	1.02 (0.57-1.82)	+
Mendoza 2009 ²⁹	2	37	3	34	0.7%	0.59 (0.09-3.77)	
Ojoo 2002 ⁵²	1	30	3	30	0.5%	0.31 (0.03-3.17)	
Otero 201031	3	72	5	60	1.2%	0.48 (0.11-2.09)	
Patel 2008 ²⁸	2	13	2	18	0.6%	1.45 (0.18-11.94)	
Richards 199827	12	160	6	81	2.4%	1.01 (0.37-2.81)	
Shepperd 199871*	3	15	3	17	0.8%	1.17 (0.2-6.89)	
Skwarska 2000 ⁵¹	4	122	6	62	1.5%	0.32 (0.09-1.17)	
Tibaldi 2004 ³⁷	24	56	26	53	4.4%	0.78 (0.37-1.66)	
Tibaldi 2009 ³⁰	7	48	8	53	2.1%	0.96 (0.32-2.88)	
Wilson 199923	26	101	30	96	6.5%	0.76 (0.41-1.42)	
Total	242	2269	257	1991	63.1%	0.79 (0.65-0.97)	٢
Test for heterogeneity: $\chi^2 = 8.5$ Test for overall effect: Z = 2.28		.99; I ² = 0					

21% Reduction in Mortality: *NNT=50*

4 Effects of hospital in the	in the home (HITH) on readmission rates							
	HITH		Hospital					
	Events	Total	Events	Total	Weight	Odds ratio, Peto, random effect (95% CI)		
Medical								
Aujesky 201132	18	171	23	168	4.2%	0.74 (0.38-1.43)		
Caplan 1999 ³⁶	3	51	5	49	1.8%	0.55 (0.12-2.44)		
Carratalà 2005 ⁴⁷	7	110	8	114	2.8%	0.90 (0.32-2.57)		
Corwin 200544	0	98	3	96	0.6%	0.14 (0.01-2.66)	←	
Cotton 2000 ⁵⁰	12	41	12	40	3.1%	0.97 (0.37-2.51)		
Davies 200045	37	100	17	50	4.0%	1.14 (0.56-2.32)	-	
Diaz Lobato 2005 ⁵⁴	1	20	0	20	0.5%	3.15 (0.12-82.16)		
Hernandez 2003 ⁵³	23	121	26	101	4.3%	0.68 (0.36-1.28)		
Melin 1992 ³⁴	51	110	32	73	4.5%	1.11 (0.61-2.01)	+	
Mendoza 2009 ²⁹	15	37	17	34	3.1%	0.68 (0.27-1.74)		
Ojoo 2002 ⁵²	10	30	13	30	2.8%	0.65 (0.23-1.86)		
Ricauda 2008 ⁵⁵	17	52	34	52	3.6%	0.26 (0.11-0.58)		
Richards 2005 ²⁷	1	24	0	25	0.5%	3.26 (0.13-83.9)	<u> </u>	
Shepperd 1998 ⁷¹ *	7	15	6	17	1.9%	1.60 (0.39-6.64)		
Shepperd 1998 ⁷¹ *	6	50	5	46	2.2%	1.12 (0.32-3.95)		
Skwarska 2000 ⁵¹	27	122	21	62	4.1%	0.55 (0.28-1.09)		
Tibaldi 2009 ³⁰	8	48	18	53	3.1%	0.39 (0.15-1.00)		
Wilson 199923	21	101	16	96	4.0%	1.31 (0.64-2.70)		
Total	264	1301	256	1126	51.0%	0.76 (0.60-0.97)	•	
Test for heterogeneity: Tau^2 Test for overall effect: Z = 2.		lf = 17; <i>P</i> = 0	.30; I ² = 13%					

24% Reduction in readmission

Technology in the Home and Telemedicine

- Active v passive
 - Physiologic monitoring
 - Monitoring of function and detection of emergencies
 - Safety
 - Security
 - Social interactions
 - Cognitive and sensory activity
 - Disease management

- VA 2 M visits
- KP in 2016 KP N. CA more televisits (phone, email, tele) than in-person
- Mayo By 2020 plans to serve 200M, most remotely
- Evidence base
 - 2012 review 141 RCTs telehealth for chronic conditions (only 10 video with doc) J Telemed Telecare 2012;18:211
 - Not really sure what works, what doesn't

Issues to Consider with All These Models

- Matching target population to the appropriate model / intervention to achieve <u>the</u> result intended
 - Population: medical, functional, social, high-cost
 - Intervention: intensity, type, how long, continuous / short-lived, workforce, scalability, who funds, who gets savings?
 - Outcome: what do you REALLY want to achieve

