
Science is producing data in amounts 
so large as to be unfathomable. 
Advances in artificial intelligence (AI) 
are increasingly needed to make sense 
of all this information (see ref. 1 and 

Nature Rev. Phys. 4, 353; 2022). For example, 
through training on copious quantities of data, 
machine-learning (ML) methods get better 
at finding patterns without being explicitly 
programmed to do so. 

In our field of Earth, space and environmen-
tal sciences, technologies ranging from sen-
sors to satellites are providing detailed views 
of the planet, its life and its history, at all scales. 
And AI tools are being applied ever more widely 

— for weather forecasting2 and climate model-
ling3, for managing energy and water4, and for 
assessing damage during disasters to speed 
up aid responses and reconstruction efforts.

The rise of AI in the field is clear from track-
ing abstracts5 at the annual conference of the 
American Geophysical Union (AGU) — which 
typically gathers some 25,000 Earth and space 
scientists from more than 100 countries. The 
number of abstracts that mention AI or ML has 
increased more than tenfold between 2015 and 
2022: from less than 100 to around 1,200 (that 
is, from 0.4% to more than 6%; see ‘Growing AI 
use in Earth and space science’)6. 

Yet, despite its power, AI also comes 

Artificial-intelligence tools 
are transforming data-driven 
science — better ethical 
standards and more robust 
data curation are needed to 
fuel the boom and prevent 
a bust.

Garbage in, garbage out: mitigating risks 
and maximizing benefits of AI in research
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Artificial-intelligence models require the vast computing power of supercomputers, such as this one at the University of California, San Diego.
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with risks. These include misapplication 
by researchers who are unfamiliar with the 
details, and the use of poorly trained mod-
els or badly designed input data sets, which 
deliver unreliable results and can even cause 
unintended harm. For example, if reports of 
weather events — such as tornadoes — are used 
to build a predictive tool, the training data are 
likely to be biased towards heavily populated 
regions, where more events are observed 
and reported. In turn, the model is likely to 
over-predict tornadoes in urban areas and 
under-predict them in rural areas, leading to 
unsuitable responses7.

Data sets differ widely, yet the same ques-
tions arise in all fields: when, and to what 
extent, can researchers trust the outcomes 
of AI and mitigate harm? To explore such ques-
tions, the AGU, with the support of NASA, last 
year convened a community of researchers 
and ethicists (including us) at a series of work-
shops. The aim was to develop a set of princi-
ples and guidelines around the use of AI and 
ML tools in the Earth, space and environmental 
sciences, and to disseminate them (see ‘Six 
principles to help build trust’)6. 

Answers will evolve as AI develops, but 
the principles and guidelines will remain 
grounded in the basics of good science — 
how data are collected, treated and used. To 
guide the scientific community, here we make 
practical recommendations for embedding 
openness, transparency and curation in the 
research process, and thus helping to build 
trust in AI-derived findings. 

Watch out for gaps and biases
It is crucial for researchers to fully understand 
the training and input data sets used in an 
AI-driven model. This includes any inherent 
biases — especially when the model’s outputs 
serve as the basis of actions such as disaster 

responses or preparation, investments or 
health-care decisions. Data sets that are poorly 
thought out or insufficiently described increase 
the risk of ‘garbage in, garbage out’ studies and 
the propagation of biases, rendering outcomes 
meaningless or, even worse, dangerous. 

For example, many environmental data have 
better coverage or fidelity in some regions or 
communities than in others. Areas that are 
often under cloud cover, such as tropical rain-
forests, or that have fewer in situ sensors or 
satellite coverage, such as the polar regions, 
will be less well represented. Similar dispari-
ties across regions and communities exist for 
health and social-science data. 

The abundance and quality of data sets are 
known to be biased, often unintentionally, 
towards wealthier areas and populations and 
against vulnerable or marginalized commu-
nities, including those that have historically 
been discriminated against7,8. In health data, 
for instance, AI-based dermatology algorithms 
have been shown to diagnose skin lesions and 
rashes less accurately in Black people than in 
white people, because the models are trained 
on data predominantly collected from white 
populations8. 

Such problems can be exacerbated when 
data sources are combined — as is often 
required to provide actionable advice to the 
public, businesses and policymakers. Assess-
ing the impact of air pollution9 or urban heat10 
on the health of communities, for example, 
relies on environmental data as well as on 
economic, health or social-science data. 

Unintended harmful outcomes can occur 
when confidential information is revealed, 
such as the location of protected resources or 
endangered species. Worryingly, the diversity 
of data sets now being used increases the risks 
of adversarial attacks that corrupt or degrade 
the data without researchers being aware11. AI 
and ML tools can be used maliciously, fraudu-
lently or in error — all of which can be difficult 
to detect. Noise or interference can be added, 
inadvertently or on purpose, to public data 
sets made up of images or other content. This 
can alter a model’s outputs and the conclu-
sions that can be drawn. Furthermore, out-
comes from one AI or ML model can serve 
as input for another, which multiplies their 
value but also multiplies the risks through 
error propagation. 

Our recommendations for data deposition 
(see ref. 6 and ‘Six principles to help build 
trust’) can help to reduce or mitigate these risks 
in individual studies. Institutions should also 
ensure that researchers are trained to assess 
data and models for spurious and inaccurate 

Following these best practices will help to 
avert harm when using AI in research. 

Researchers 
1. Transparency. Clearly document and 
report participants, data sets, models, bias 
and uncertainties. 
2. Intentionality. Ensure that the AI model 
and its implementations are explained, 
replicable and reusable.
3. Risk. Consider and manage the possible 
risks and biases that data sets and 
algorithms are susceptible to, and how 
they might affect the outcomes or have 
unintended consequences. 
4. Participatory methods. Ensure inclusive 
research design, engage with communities 
at risk and include domain expertise. 

Scholarly organizations (including 
research institutions, publishers, societies 
and funders)
5. Outreach, training, and leading practices. 
Provide for all roles and career stages. 
6. Sustained effort. Implement, review and 
advance these guidelines.

More detailed recommendations are 
available in the community report6 
facilitated by the American Geophysical 
Union, and are organized into modules for 
ease of distribution, use in teaching and 
continued improvement. 

Six principles to 
help build trust

results, and to view their work through a lens 
of environmental justice, social inequity and 
implications for sovereign nations12,13. Institu-
tional review boards should include expertise 
that enables them to oversee both AI models 
and their use in policy decisions. 

Develop ways to explain how AI 
models work
When studies using classical models are pub-
lished, researchers are usually expected to 
provide access to the underlying code, and any 
relevant specifications. Protocols for report-
ing limitations and assumptions for AI models 
are not yet well established, however. AI tools 
often lack explainability — that is, transpar-
ency and interpretability of their programs. It 
is often impossible to fully understand how a 

GROWING AI USE IN
EARTH AND SPACE SCIENCE
A rising proportion of abstracts for the annual meeting 
of the American Geophysical Union mention artificial 
intelligence (AI) or machine learning (ML) — a trend 
seen across all areas of geoscience.
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result was obtained, what its uncertainty is or 
why different models provide varying results14. 
Moreover, the inherent learning step in ML 
means that, even when the same algorithms 
are used with identical training data, different 
implementations might not replicate results 
exactly. They should, however, generate 
results that are analogous. 

In publications, researchers should clearly 
document how they have implemented an 
AI model to allow others to evaluate results. 
Running comparisons across models and 
separating data sources into comparison 
groups are useful soundness checks. Further 
standards and guidance are urgently needed 
for explaining and evaluating how AI models 
work, so that an assessment comparable to 
statistical confidence levels can accompany 
outputs. This could be key to their further use. 

Researchers and developers are working on 
such approaches, through techniques known 
as explainable AI (XAI) that aim to make the 
behaviour of AI systems more intelligible to 
users. In short-term weather forecasting, for 
example, AI tools can analyse huge volumes 
of remote-sensing observations that become 
available every few minutes, thus improving 
the forecasting of severe weather hazards. 

Clear explanations of how outputs were 
reached are crucial to enable humans to assess 
the validity and usefulness of the forecasts, 
and to decide whether to alert the public or 
use the output in other AI models to predict 
the likelihood and extent of fires or floods2.

In Earth sciences, XAI attempts to quan-
tify or visualize (for example, through heat 
maps) which input data featured more or less 
prominently in reaching the model’s outputs 
in any given task. Researchers should examine 
these explanations and ensure that they are 
reasonable. 

Forge partnerships and foster 
transparency
For researchers, transparency is crucial at each 
step: sharing data and code; considering fur-
ther testing to enable some forms of replica-
bility and reproducibility; addressing risks and 

biases in all approaches; and reporting uncer-
tainties. These all necessitate an expanded 
description of methods, compared with the 
current way in which AI-enabled studies are 
reported. 

Research teams should include specialists 
in each type of data used, as well as members 
of communities who can be involved in provid-
ing data or who might be affected by research 
outcomes. One example is an AI-based project 
that combined Traditional Knowledge from 
Indigenous people in Canada with data col-
lected using non-Indigenous approaches to 
identify areas that were best suited to aqua-
culture (see go.nature.com/46yqmdr). 

Sustain support for data curation 
and stewardship
There is already a movement across scientific 
fields for study data, code and software to be 
reported following FAIR guidelines, mean-
ing that they should be findable, accessible, 
interoperable and reusable. Increasingly, 
publishers are requiring that data and code 
be deposited appropriately and cited in the 
reference sections of primary research papers, 
following data-citation principles15,16. This 
is welcome, as are similar directives from 
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“Recognized, quality-
assured data sets are 
particularly needed for 
generating trust in AI .”

AI tools are being used to assess environmental observations, such as this satellite image of agricultural land in Bolivia that was once a forest.

30 | Nature | Vol 623 | 2 November 2023

Comment



funding bodies, such as the 2022 ‘Nelson 
memo’ to US government agencies (see go.
nature.com/3qkqzes). 

Recognized, quality-assured data sets are 
particularly needed for generating trust in AI 
and ML, including through the development 
of standard training and benchmarking data 
sets17. Errors made by AI or ML tools, along with 
remedies, should be made public and linked 
to the data sets and papers. Proper curation 
helps to make these actions possible.

Leading discipline-specific repositories for 
research data provide quality checks and the 
ability to correct or add information about 
data limitations and bias — including after 
deposition. Yet we have found that the current 
data requirements set by funders and journals 
have inadvertently incentivized researchers to 
adopt free, quick and easy solutions for pre-
serving their data sets. Generalist repositories 
that instantly register the data set with a digital 
object identifier (DOI) and generate a support-
ing web page (landing page) are increasingly 
being used. Completely different types of 
data are too often gathered under the same 
DOI, which can cause issues in the metadata, 
make provenance hard to trace and hinder 
automated access.

This trend is evident from data for papers 
published in all journals of the AGU5, which 
implemented deposition policies in 2019 and 
started enforcing them in 2020. Since then, 
most publication-related data have been 
deposited in two generalist repositories: 
Zenodo and figshare (See ‘Rise in data archiv-
ing’). (Figshare is owned by Digital Science, 
which is part of Holtzbrinck, the majority 
shareholder in Nature’s publisher, Springer 
Nature.) Many institutions maintain their own 
generalist repositories, again often without 
discipline-specific, community-vetted cura-
tion practices.

This means that many of the deposited 
research data and metadata meet only two of 
the FAIR criteria: they are findable and acces-
sible. Interoperability and reusability require 
sufficient information about data provenance, 
calibration, standardization, uncertainties 
and biases to allow data sets to be combined 
reliably — which is especially important for 
AI-based studies. 

Disciplinary repositories, as well as a few 
generalist ones, provide this service — but it 
takes trained staff and time, usually several 
weeks at least. Data deposition must therefore 
be planned well before the potential accept-
ance of a paper by a journal. 

More than 3,000 research repositories 
exist18, although many are not actively accept-
ing new data. The most valuable repositories 
are those that have long-term funding for 
storage and curation, and accept data glob-
ally, such as GenBank, the Protein Data Bank 
and the EarthScope Consortium (for seismo-
logical and geodetic data). Each is part of an 

international collaboration network. Some 
repositories are funded, but are restricted to 
data derived from the funder’s (or country’s) 
grants; others have short-term funding or 
require a deposition fee. This complex land-
scape, the various restrictions on deposition 
and the fact that not all disciplines have an 
appropriate, curated, field-specific reposi-
tory all contribute to driving users towards 
generalist repositories, which compounds the 
risks with AI models. 

Scholarly organizations such as professional 
societies, funding agencies, publishers and 
universities have the necessary leverage to 
promote progress. Publishers, for example, 
should implement checks and processes to 
ensure that AI and ML ethics principles are sup-
ported through the peer-review process and in 
publications. Ideally, common standards and 
expectations for authors, editors and review-
ers should be adopted across publishers and 
be codified in existing ethical guidance (such 
as through the Council of Science Editors). 

We also urge funders to require that 
researchers use suitable repositories as part 
of their data sharing and management plan. 
Institutions should support and partner with 
those, instead of expanding their own gener-
alist repositories. 

Sustained financial investments from 
funders, governments and institutions — 
that do not detract from research funds — are 
needed to keep suitable repositories running, 
and even just to comply with new mandates16. 

Look at long-term impact 
The broader impacts of the use of AI and ML 
in science need to be tracked. Research that 
assesses workforce development, entrepre-
neurial innovation, real community engage-
ment and the alignment of all the scholarly 
organizations involved is needed. Ethical 
aspects must remain at the forefront of these 
endeavours: AI and ML methods must reduce 
social disparities rather than exacerbate them; 
enhance trust in science rather than undercut 
it; and intentionally include key stakeholder 

voices, not leave them out. 
AI tools, methods and data generation are 

advancing faster than institutional processes 
for ensuring quality science and accurate 
results. The scientific community must take 
urgent action, or risk wasting research funds 
and eroding trust in science as AI continues 
to develop.
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RISE IN DATA ARCHIVING
Researchers are increasingly depositing data in 
repositories to widen access, but mostly in generalist 
rather than discipline-specific ones that o�er curation. 
This can be seen in the top 15 repositories used in 
primary-research papers published in American 
Geophysical Union journals between 2019 and 2022.
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