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AI / ML 
Recent Enthusiasm

Unbounded expectations

Naive Assumptions:

generatum ex nihilo (Latin "generated out of nothing")

Replacement vs. augmentation of important 
human thinking and acting

Effortless portability to bedside interventions

Clear and demonstrable ROI 

MetLeuGlnSerMetValSerLeuLeuGlnSerLeuValSerLeuIleIleGln

Tyr-Lys-Ala-Ala-Val-Asp-Leu-Ser-His-Phe-Leu-Lys-Glu-Lys

Asp-Trp-Trp-Glu-Ala-Arg-Ser-Leu-Thr-Thr-Gly-Glu-Thr-Gly-Tyr-Pro-Ser



Earnestness is enthusiasm
tempered by reason.

~ Blaise Pascal
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Policy Implications



● Cost structures create access barriers
● AI adoption is accelerating a technology ‘arms race’ and digital divide
● Gaps in reimbursement and health economics policies relating to AI
● Specialized workforce and training needs

Essential Policy Considerations

● Continuous learning and adaptation requires invalidates conventional 
safety/efficacy frameworks

- systems materially change during-shortly after the evaluation period, potentially 
invalidating the original safety/efficacy evidence

- differs from traditional medical devices which remain static after validation testing             
[i.e., build cumulative evidence over time based on a stable product version]
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Paradoxes
+

Challenges



Challenges: AI Cost Pyramid

Will likely mirror current enterprise AI pricing 
structures
● AI systems often employ per-use pricing models that can 

escalate rapidly in high-throughput clinical settings
● Financial concerns center on compounding effect of per-

use costs in high-volume applications 

Key Paradoxes
● ↑ AI capability requires  larger, more complex models
● ↑ sophisticated tasks require more compute, not less
● ↑ data quality requirements, raising costs
● ↑ autonomous function adds safety + oversight costs 



Base Platform Costs
- Initial system purchase, a 
annual licensing, maintenance

Mandatory Update Cycle
- Quarterly algorithm updates, annual system 
upgrades, new feature integration, security

Per-Case Fee Stack
Each procedure incurs layered fees 

1.Core Processing + Compute
- Algorithm usage,  analytics, reporting

2. Feature Utilization  
- Advanced imaging integration, real-time decision 

support, specialized protocols

3. Data Management
- Storage, quality metrics, outcome tracking, 

traceability

Compounding Effects
● New features = New per-case fees
● Updates enable more features
● More features = Higher base costs
● Higher base = More expensive updates

AI: Hidden Cost Multiplication Effect



AI Cost Multiplication - System Effects
● Cost-prohibitive for healthcare systems operating on thin margins
● Geographical disparities + economic stratification 
○ - Two-tiered care system emerges
■ - Loss of local expertise as cases shift to centers
○ - Health outcomes diverge based on geography

- Knowledge gap develops between AI and non-AI trained



Specialized Training for AI-Enabled Work



Illustrative Scenario:
Human-AI Collaboration in the 
Operating Room

● Embedded intelligence (symbolic logic) in 
surgical robotics

● Semi-autonomous surgery based on 
deep knowledge of anatomy, structure-
function constraints, sequencing, 
procedural objectives, etc.

● Often integrated with, receiving input 
from other AI systems (imaging)



● AI systems have distinct patterns of excellence and blind spots
● Providers must learn to effectively "co-pilot" with the AI system, 

understanding not just when to follow its guidance but also when and how 
to appropriately override it

- Complicated→with AI's continuous learning capability - as the system evolves, 
users must adapt their interaction patterns accordingly

- Dynamic→ both the AI and the users are simultaneously learning and adapting, 
requiring ongoing training and periodic recalibration

- Needs→ new kind of surgical expertise combining traditional surgical judgment + 
sophisticated AI interaction skills

Specialized Training for AI-Enabled Work
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Strategies 
to

Overcome
Challenges



● Value-based payment model for AI technology               
● Dynamic outcomes-linked technology payment  models
○- Departure from more ‘conventional’ VB models

- Entail increased financial risk-bearing by AI technology generators
● Must account for:

- Rapid evolution of the technology
- Paradox of cost increasing as technology matures
- Specialized workforce for more complex AI use cases 

Demand for Innovative Ideas and Models



● Value-based payment model for AI technology vendor / payer partnerships                
Key Components of reimbursement: 

Ex 1:     AI Value Evolution Model (AVEM)

Evolution Coefficient (EC)

Clinical Outcomes track against predicted 
AI performance
Cost Efficiency measures resource 
utilization
Access Score reflects equitable distribution
Time factor rewards early efficiency gains

A "learning score" for new AI medical 
technology that answers the question: 

"Is this technology getting better and 
more cost-effective over time as 
promised?"

Dynamic Adjustment

AI vendor reimbursement



Ex 1:     AI Value Evolution Model (AVEM)

Initial deployment might start 
with EC = 0.8
reflects early-stage deployment

After 3 months, EC = 1.3  (↑) 
if it shows:

- Improved accuracy (92%)
- Good adaptation to population (85%)
- Strong edge case handling (88%)
- Effective workflow integration (90%) 

After 8 months,  EC =1.5-1.7  (↑) 
if it shows:

- Sustained high performance
- Expanded population coverage (96%)
- Demonstrated learning/adaptation
- Equitable distribution of benefits

1 2 3

AI vendor reimbursement
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Quality Multipliers:Base Payment Structure:

Standard Rate: Traditional board-
certified surgeon

Tier 1: Basic AI-surgical 
certification (+15%)
Tier 2: Fellowship-trained (+15%)
Tier 3: Fellowship + 2 years AI 
system experience (+15%)

Outcomes meeting AI-predicted 
targets: 1.1x
Complex case management: 1.2x
Successful edge case handling: 
1.3x
Teaching/training others: 1.15x

Lower malpractice premiums for 
certification level
Shared liability models between 
providers + AI vendors
Risk pool adjustments based on 
certification level
Continuous algorithm updates
Complete case reporting to 
regulatory authorities
Cybersecurity controls

Risk Mgmt Integration:

Health system + provider reimbursement

Ex 2:     Virtuous Use-Network Learning Model



Value Exchange:Financial Framework:

CMS: 25%
AI Industry Partners: 50%
Hospital: 25%

Hospital receives credits against 
future per-case fees

Industry Partner

● Committed user base
● Real-world performance data
● Algorithm improvement
● Edge case documentation

Providers
● Ongoing skill development
● Performance optimization
● Latest AI capabilities
CMS
● Offsets DGME + IME payments

Data & Ethics Controls
Financial Firewalls

● Segregated funding streams
● Transparent cost allocation
● Anti-kickback compliance

Clinical Independence controls

● Autonomous clin. decision-making
● Independent assessment protocols
● Unbiased certification standards
● Protected override authority
● Conflict disclosure requirements

Critical Oversight Areas:

Specialized Training

Ex 3:     Training Investment Partnerships
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What Tomorrow
Holds



Crossroads of AI Innovation and Policy
We can either design the future or inherit its challenges

[Effective + innovative] policy will determine whether AI amplifies or 
resolves healthcare disparities 



Final Thoughts

“This isn’t the end of something, 
it’s the beginning of many new 
things.”

-Dame  Janet Thornton

Senior scientist and Director Emeritus 
European Bioinformatics Institute (EBI),
European Molecular Biology Laboratory (EMBL)
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Millions of simulations 

Stress-test different organizational 
configurations 

Suggest structural changes to build 
redundancy and flexibility 

AI for in silico System 
Optimization

akin to use of genetic algorithms to  
evolve robust biological systems


