Smart Tech, Smarter Policy: The Economics of AI Excellence

Navigating Costs, Competency, and Value in Al

Meghan Dierks, MD, FACS *Chief Data Officer, Komodo Health*

Disclosures

- Komodo Health Chief Data Officer
- Harvard Medical School Assistant Professor (part time)
- Harvard Medical Faculty Physicians at BIDMC (part time)
 - Core Faculty, ACGME Clinical Informatics Fellowship Program
 - Dir Advanced Analytics and Technology Assessment

Asp-Trp-Trp-Glu-Ala-Ara-Ser-Leu-Thr-Thr-Gly-Glu-Thr-Gly-Tyr-Pro-Ser

AI/ML Recent Enthusiasm

Unbounded expectations

Naive Assumptions:

generatum ex nihilo (Latin "generated out of nothing")

Effortless portability to bedside interventions Clear and demonstrable ROI

Replacement vs. augmentation of important human thinking and acting

Earnestness is enthusiasm tempered by reason.

~ Blaise Pascal

Policy Implications

Essential Policy Considerations

- Cost structures create access barriers
- Al adoption is accelerating a technology 'arms race' and digital divide
- Gaps in reimbursement and health economics policies relating to AI
- Specialized workforce and training needs
- Continuous learning and adaptation requires invalidates conventional safety/efficacy frameworks
- systems materially change during-shortly after the evaluation period, potentially invalidating the original safety/efficacy evidence
- differs from traditional medical devices which remain static after validation testing [i.e., build cumulative evidence over time based on a stable product version]

Paradoxes + Challenges

Challenges: AI Cost Pyramid

Will likely mirror current enterprise AI pricing structures

- Al systems often employ per-use pricing models that can escalate rapidly in high-throughput clinical settings
- Financial concerns center on compounding effect of peruse costs in high-volume applications

Key Paradoxes

- ↑ AI capability requires larger, more complex models
- ↑ sophisticated tasks require more compute, not less
- ↑ data quality requirements, raising costs
- ↑ autonomous function adds safety + oversight costs

Al: Hidden Cost Multiplication Effect

Base Platform Costs

- Initial system purchase, a annual licensing, maintenance

Per-Case Fee Stack

Each procedure incurs layered fees

- 1.Core Processing + Compute
- Algorithm usage, analytics, reporting

2. Feature Utilization

- Advanced imaging integration, real-time decision support, specialized protocols

3. Data Management

- Storage, quality metrics, outcome tracking, traceability

Mandatory Update Cycle

- Quarterly algorithm updates, annual system upgrades, new feature integration, security

Al Cost Multiplication - System Effects

- Cost-prohibitive for healthcare systems operating on thin margins
- Geographical disparities + economic stratification
 - Two-tiered care system emerges
 - Loss of local expertise as cases shift to centers
 - Health outcomes diverge based on geography
 - Knowledge gap develops between AI and non-AI trained

Specialized Training for AI-Enabled Work

Illustrative Scenario:

Human-Al Collaboration in the Operating Room

- Embedded intelligence (symbolic logic) in surgical robotics
- Semi-autonomous surgery based on deep knowledge of anatomy, structurefunction constraints, sequencing, procedural objectives, etc.
- Often integrated with, receiving input from other AI systems (imaging)

Specialized Training for AI-Enabled Work

- Al systems have distinct patterns of excellence and blind spots
- Providers must learn to effectively "co-pilot" with the AI system, understanding not just when to follow its guidance but also when and how to appropriately override it
 - Complicated → with AI's continuous learning capability as the system evolves, users must adapt their interaction patterns accordingly
 - Dynamic → both the AI and the users are simultaneously learning and adapting, requiring ongoing training and periodic recalibration
 - Needs → new kind of surgical expertise combining traditional surgical judgment + sophisticated AI interaction skills

Strategies to Overcome Challenges

Demand for Innovative Ideas and Models

- Value-based payment model for AI technology
- Dynamic outcomes-linked technology payment models
- Departure from more 'conventional' VB models
 - Entail increased financial risk-bearing by AI technology generators
- Must account for:
 - Rapid evolution of the technology
 - Paradox of cost increasing as technology matures
 - Specialized workforce for more complex AI use cases

Ex 1: Al Value Evolution Model (AVEM)

 Value-based payment model for AI technology vendor / payer partnerships Key Components of reimbursement:

Evolution Coefficient (EC)

Clinical Outcomes track against predicted Al performance

Cost Efficiency measures resource utilization

Access Score reflects equitable distribution

Time factor rewards early efficiency gains

Dynamic Adjustment

A 'learning score' for new AI medical technology that answers the question:

'Is this technology getting better and more cost-effective over time as promised?' AI vendor reimbursement

Ex 1: Al Value Evolution Model (AVEM)

Initial deployment might start with EC = 0.8

reflects early-stage deployment

After 3 months, EC = $1.3 (\uparrow)$ if it shows:

- Improved accuracy (92%)
- Good adaptation to population (85%)
- Strong edge case handling (88%)
- Effective workflow integration (90%)

\prec	

After 8 months, EC = 1.5-1.7 (\uparrow) if it shows:

- Sustained high performance
- Expanded population coverage (96%)
- Demonstrated learning/adaptation
- Equitable distribution of benefits

Ex 1: Al Value Evolution Model (AVEM)

 Value-based payment model for AI technology vendor / payer partnerships Key Components of reimbursement:

Evolution Coefficient (EC)

Clinical Outcomes track against predicted Al performance

Cost Efficiency measures resource utilization

Access Score reflects equitable distribution Time factor rewards early efficiency gains

Dynamic Adjustment

Health system + provider reimbursement

Ex 2: Virtuous Use-Network Learning Model

Base Payment Structure:

Standard Rate: Traditional boardcertified surgeon

Tier 1: Basic Al-surgical certification (+15%)

Tier 2: Fellowship-trained (+15%)

Tier 3: Fellowship + 2 years Al system experience (+15%)

Quality Multipliers:

Outcomes meeting AI-predicted targets: 1.1x

Complex case management: 1.2x

Successful edge case handling: 1.3x

Teaching/training others: 1.15x

Risk Mgmt Integration:

Lower malpractice premiums for certification level

Shared liability models between providers + Al vendors

Risk pool adjustments based on certification level

Continuous algorithm updates

Complete case reporting to regulatory authorities

Cybersecurity controls

Specialized Training

Ex 3: Training Investment Partnerships

Financial Framework:

CMS: 25% Al Industry Partners: 50% Hospital: 25%

Hospital receives credits against future per-case fees

Value Exchange:

Industry Partner

- Committed user base
- Real-world performance data
- Algorithm improvement
- Edge case documentation

Providers

- Ongoing skill development
- Performance optimization
- Latest AI capabilities

CMS

• Offsets DGME + IME payments

Critical Oversight Areas:

Data & Ethics Controls

Financial Firewalls

- Segregated funding streams
- Transparent cost allocation
- Anti-kickback compliance

Clinical Independence controls

- Autonomous clin. decision-making
- Independent assessment protocols
- Unbiased certification standards
- Protected override authority
- Conflict disclosure requirements

What Tomorrow Holds

Crossroads of AI Innovation and Policy

We can either design the future or inherit its challenges

[Effective + innovative] policy will determine whether AI amplifies or resolves healthcare disparities

Final Thoughts

"This isn't the end of something, it's the beginning of many new things."

-Dame Janet Thornton

Senior scientist and Director Emeritus European Bioinformatics Institute (EBI), European Molecular Biology Laboratory (EMBL)

Backup Slides

Al for *in silico* System Optimization

Millions of simulations

Stress-test different organizational configurations

Suggest structural changes to build redundancy and flexibility

akin to use of genetic algorithms to evolve robust biological systems